
The Session Based Fault Tolerance Algorithm of

Platform EGO Web Service Gateway

Xiaohui Wei, Yuan Luo, Jishan Gao, Xiaolei Ding
College of Computer Science and Technology, Jilin University, China

{weixh@jlu.edu.cn, pp.jordan@email.jlu.edu.cn, gjs0064114@126.com,

dxlxiaolei@163.com}

Abstract

Although grid computing has adopted Web services technology to deal
with platforms heterogeneity and to enhance service and application
interoperability, it is still a challenge to build web service applications with
high reliability and availability to meet the requirements of grid communities.
The paper discusses the design of Platform EGO WSG with high reliability.
To support a huge user base and reduce the response time, WSGs work in
cluster model and the loads are dynamic balanced among them. Besides, a
lightweight notification mechanism is implemented to provide better
interoperability between WSG and WSCs. Moreover, we designed a
session-based a-synchronized recovery algorithm to achieve WSG fault
tolerance, which has short freezing time and is able to isolate the recovery
process for each WSC. This approach can rebuild the service sessions and
the notification mechanism after restart, to handle Notification failure, and
WSG failure report, etc.

Keywords
grid, web service gateway, fault tolerance, session, load balance

2

1. INTRODUCTION

From OGSI to WSRF, grid computing has gradually adopted Web
services and SOA technologies to solve the resource sharing problems in
heterogeneous environments of science, engineer and commerce[1]. Unlike
traditional cluster computing environments such as LSF, PBS, and SGE etc,
Platform Enterprise Grid OrchestratorTM (EGO) is a SOA based grid
platform newly released by Platform Computing Inc. to manage the shared
resources across geographically dispersed sites for diverse enterprise
applications, services and workloads. Platform EGO Web Service
Gateway(WSG), is a grid middleware to enable the applications, called web
service clients(WSC), to access Platform EGO services as web services.
However, it is a challenge to realize web service based grid services with
high performance, reliability and availability to meet the requirements of
grid communities. As grid computing becomes widely adopted, there is a
fresh need for web service technologies to combine with recovery-based
techniques and parallel processing technologies to achieve fault-tolerance
and high performance.

1.1 Related Works

Although many works have been done in the field of distributed system
recovery, the research on web service fault-tolerance is very new in this area.
Currently there are no standard specifications dealing with fault tolerance in
web services.

Normally a web server does not maintain the active connections with its
clients, which is called stateless. Hence, in many cases, people just use very
simple protocol to handle the web service crashes. A service monitor
mechanism would be used to detect the service fault and the future requests
from clients will be re-directed to redundant servers. For example, paper [2,3]
deliver fault tolerance on web services based on the passive replication
approach and implement basic fault detection mechanisms on primary server.
Paper [4] proposes a general architecture to realize fault-tolerance web
services, which have components responsible for calling concurrently the
service replicas, wait for processing, analyze the responses processed, and

3

return them to the client. Moreover, paper [4] supports the use of the active
replication technique in order to obtain fault tolerance in service oriented
architectures.

Paper [3] is also capable of tolerating for requests being processed at the
time of server failure. However, its implementation need modifications to the
Linux kernel and to the Apache web server. While paper [5] presents an
implementation of a fault tolerant TCP that allows a fault tolerance server to
keep its TCP connections open until either it recover the TCP connection or
fail to backup. Working with rollback recover, the failure and recovery of the
server process are completely transparent to client processes connected with
it via TCP.

In Platform EGO, the pattern of Web Service Gateway is used to trap
and map service requestors to its target services. To support a huge grid user
community, Platform Ego WSG can be deployed in cluster model in that a
bunch of WSGs work concurrently with dynamic load balancing to provide a
much higher performance. As the numbers of WSGs could be large and their
locations are not fixed, it is not practical to setup a backup for each WSG，
due to the performance overhead[6]. Hence, in this paper, we use rollback
recovery to realize a lightweight fault-tolerance mechanism for WSGs. It
works well with the WSG cluster model to be able to provide both high
reliability and high performance to end users.

Rollback recovery achieves fault tolerance by saving the recovery
information (called checkpoints) of processes periodically in stable storage,
which has many flavors. It can be transparently to users via supported by OS
kernel, like on Cray or SGI, or implemented as a library, like Condor[7]. It
can also be embedded in applications to let users decide when and what to
save on stable storage, which is called application level rollback recovery.

In the paper, the application level rollback recovery is realized in WSG.
Since the most critical information in a WSG is the active sessions between
WSG and its WSCs, and the sessions between WSG and EGO internal
services, we designed a session based a-synchronized recovery algorithm
which has short freezing time and is able to isolate the recoveries of different
WSCs. Moreover, the load balancing algorithm for WSG cluster is also
based on sessions, which is consistent with the recovery algorithm. When a
WSG is down, the system can either restart a new instance if there is an

4

available host, or select another WSG to take over the failed WSG’s
workload.

1.2 Paper Organization

The rest of this paper is as follows. In Section 2 we introduce the

overview of EGO platform. Section 3 presents the EGO WSG, including
WSG architecture, WSG session, WSG security, etc. Section 4 gives out the
WSG fault tolerance approach and recovery algorithm based on Reliable
Notifications, WSG failure report, etc. In section 5, we make the conclusion.

2. EGO OVERVIEW

To discuss Platform EGO is out of the scope of the paper. However, in
order to understand WSG’s functionality, we will give a brief introduction to
Platform EGO first. Platform EGO is a SOA based grid platform to offer a
single, cohesive management environment that centrally allocates the shared
resources across geographically dispersed sites for diverse enterprise
applications, services and workloads. It allows developers, administrators,
and users to treat a collection of distributed software and hardware resources
on a shared computing infrastructure (cluster) as parts of a single virtual
computer. Platform EGO uses Information, Allocation and Execution as key
concepts in its Enterprise Grid Architecture. While many technologies
effectively deal individually with Information and Execution activities
associated with resource management, none take a comprehensive approach
to the Allocation component. To accomplish this, Platform EGO uses a
single common agent on each server to orchestrate the sharing of enterprise
resources across application and organizational domains. Figure 1 illustrates
Platform EGO as the foundation for a grid platform. The traditional
computing resources, like hosts and clusters, are virtualized by a bunch of
loose-coupled services, such as resource allocation service, execution service,
security service, etc.

In a traditional cluster, like LSF or SGE, the users submit their jobs to
the cluster. Then, the cluster will allocate resources and execute the jobs. A

5

couple of EGO services provide the similar functionality but with better
flexibility and extensibility. For example, in EGO, a user may first ask for
resources from Allocation Service. Once the resources are allocated,
Allocation Service will send a notification to the user. Then the user can ask
for Execution Service to execute the task on allocated resources. If the
resources allocated to a user are reclaimed by the system, or the status of a
task change, the user will also get the notifications from EGO services.

Figure 1. Platform EGO as the foundation for a grid platform

3. EGO WEB SERVICE GATEWAY

EGO Web Service Gateway (WSG) that provides a standards-based web

services interface for web service clients (applications) to contact Platform
EGO.

3.1 EGO WSG Architecture

WSG is a special EGO service to enable the users to access EGO via
web service interface, and itself is also under the control of Service Director.
The WSG is able to (a) transfer a WSC’s request to the proper EGO services;
(b) send the notifications from EGO services back to WSCs; (c) support
role-based access control; (d) has no effect on the WSCs after a restart, (e)

6

provide EGO Platform with high performance. In the paper we introduced
the WSG Cluster model to enable multiple WSGs to work together to
provide higher performance and scalability. Figure 2 shows the WSGs
Cluster Architecture.

Figure 2. WSGs Cluster Architecture

In this model, multiple WSGs are working in parallel to handle WSC
requests, and balance the load among them to further improve the scalability
and performance, which is similar to WebSphere’s Web Service Gateway
Cluster(WSGC). A new component, Request Director is introduced to
distribute the load among WSGs. Request Director contains two sub
components: Load Balancer and Load Info Manager. The Distributor of each
WSG will periodically send its load info L to Load Info Manager. If the load
of a WSG is too high, it even can send an unavailable message to Load Info
Manager to block Balancer to distribute more loads to it.

Load Balancer is a mediator between WSCs and WSGs, and its load
distributing policy is also session based. At the beginning of a new client
session, WSC will query Load Balancer to get an available WSG. Then,
Load Balancer will check Load Info Manager and return a proper WSG’s
URL to WSC. After that, the WSC will contact the WSG directly during the

7

session. If there is no WSG available, Load Balancer may start a new WSG.
Hence, the WSG Cluster size is dynamic adjusted due to the real load.

WSG uses the thread pool pattern to process WSC requests in parallel.
There is a Request Queue to hold the requests from WSCs, and there is a
bunch of working threads, called Request Handlers, to handle the requests in
Request Queue concurrently. Distributor is responsible for dispatching the
requests to the Handlers. The handlers access the proper EGO services on
behalf of WSCs and send back the results to WSCs. Figure 3 shows the
WSGs workloads.

WSGs Workload

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Request Handlers

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

of
 S

es
si

on
(m

s) Capacity=20

Capacity=40

Capacity=80

Capacity=150

Capacity=80, 2-WSGs Cluster

Capacity=120,3-WSGs Cluster

Capacity=160,4-WSGs Cluster

Figure 3 WSGs Workload

Each Handler processes the WSC’s requests by transforming them into a
series of accesses to EGO services using internal APIs. Some EGO services
require the clients to maintain the session context, and the related
communications must use the same session Handle. However, WSCs have
no knowledge about the EGO services. Hence, WSG implements a Session
Manager to manage the EGO service sessions for WSCs. While accessing
EGO services, Session Manager will decide whether to use an existing
session or to create a new one. If a session will not be used any more, it will
be closed by Session Manager immediately.

The WSG supports notifications by following WS-Notification

8

specification[9]. Notification Manager integrates the functionalities of
Notification Broker and Subscription Manager. EGO services work as
Notification Publishers, while WSCs are both Notification Subscribers and
Notification Consumers. The WSCs who want to receive notifications
should register themselves to WSG Notification Manager first. Then,
Notification Manager will listen to the active sessions maintained by Session
Manager, collect the notifications from EGO services, and deliver them to
registered WSCs respectively.

Due to the Notification Manager and Session Manager, WSG could not
be designed as a stateless component. After restart, WSG must rebuild all the
live sessions with EGO services, and recover the notification context for all
registered WSCs. Hence, Data Manager is designed to save/restore the
necessary running contexts related to notifications and sessions. We will
discuss WSG’s recovery algorithm in Section 4.4.

3.2 WSG Sessions

Session is an important concept in WSG, as it relates to WSG’s recovery,

notification, and performance tuning etc. WSG has two kinds of sessions.
One is the sessions between WSCs and WSG, which are called client
sessions. The other is the sessions maintained by WSG and EGO services,
which are called service sessions. After a client session is created, multiple
service sessions would be setup by WSG and specific EGO services to
perform the requests from the client session. Once a client session is closed
by the WSC, all the corresponding service sessions will be closed
immediately by WSG. The following example will show how WSC run a
task on Platform EGO via WSG.

Commonly, a client session contains multiple operations, and Figure 4
gives out an example. First, the WSC starts the client session with WSG by
providing the role name and password (step 1). WSG will authenticate the
role name and password via accessing EGO security service (step 2), and
return a session credential to WSC on success (step 3). The WSC should
ship the credential in its subsequent requests to identify itself during the
session. In step 4, WSC sends the resource requirement for the job execution
to WSG and waits for resource allocation notifications. Then, WSG will

9

create a service session with EGO Allocation Service and send the resource
allocation requests to it (step 5-1). After the required resources are allocated
successfully, a notification will be returned by Allocation Service to WSG
(step 5-2). Once received the resource allocation notification forwarded by
WSG (step 6), the WSC will start the job execution request (step 7). After
that, WSG will create another service session with Execution Service to start
the job (step 8-1). During the job running, the notifications will be sent to
WSC once the job status changes (step 8-1). After the job finish, WSG will
send a job finish notification to WSC (step 9). Then, WSC will close its
session with WSG (step 10), and WSG will cancel the credential and close
all the relevant service sessions.

 Resource Allocation
Service

Execution
Service

Security
Service WSG WSC

1
2

3

4 5-1
6

7

9

8-1

10

5-2

8-2

Figure 4. A Client Session

As there are dependencies between some operations in a session, such
operations have to be executed in proper order. For example, the job
execution operation must be issued after its resource allocation operation. In
real life, the operations from different client sessions (WSCs) will compete
for EGO resources. If an operation of a session is delayed, all its consequent
operations are delayed too.

3.3 WSG Security

Platform EGO provides the role-based access control for WSCs. A user

could be mapped to multiple roles inside of EGO. Before accessing any
EGO service, a WSC must authenticate itself to EGO. WS-Security’s
Username Token is used between WSG and WSCs to support such
authentication. In WS-Security’s Username Token profile 1.0[8], a user name
token consists of four elements as below:

10

UsernameToken: (Username, Password, Nonce, Created)
Nonce element is a random value created by the sender which is used as

an effective countermeasure against replay attacks. The Created element
specifies a timestamp which is used to indicate the creation time. The
Username and Password pair is used to authenticate the WSC’s identity.
Inside Platform EGO, there is a table to map the usernames to role names.
Besides normal users, there are some special users are defined by Platform
EGO, such as EGO_admin, which has privileges to re-start the EGO system
or change the system configuration.

As the internet is an unsafe communication channel, even WSG supports
SSL to protect the SOAP message from being intercepted by eavesdroppers,
it is still not recommended to use Username/Password frequently. Hence, we
enhanced the Ws-Security Username Token profile to support credential
based authentication. A credential is an encrypted string token that consists
of the user information and a time stamp. Normally, a WSC gets its
credential from WSG by providing the username and password when it starts
a new client session with WSG. After that, WSC is able to use Credential
instead of Username/Password to authenticate itself to WSG. Since each
credential has a life time like a Kerberos ticket, it needs to be renewed before
it expires during a session. With the above enhancement, a username token
is extended as the following:
UsernameToken: ((Username, Password)|(Credential),Nonce, Created)

The above enhancement does not only improve the protection for
sensitive information but also provide more flexibility. For example, the
system admin does not need be mapped to privilege roles for all his
operations. He can start a session as a normal user and get the credential. In
most cases, he just uses the normal user’s credential to perform the tasks,
and the system admin’s username/password is only used when necessary.

4. WSG FAULT TOLERANCE

The communications among WSCs, WSG and EGO services are not

simple request-response model. Notifications play very important roles so
that the WSCs are usually designed as event-driven applications. Therefore,
WSG must have its own fault tolerant approaches, such as rebuild the service

11

sessions and the notification mechanism after restart, to handle the failures.
Otherwise, it could cause deadlocks or WSG crashes.

4.1 Reliable Notifications

A deadlock may be caused when a WSG have already sent the allocation
notification to the WSC but the WSC do not receive any notification. In this
scenario, the allocated resource will not be released unless the WSC calls the
WSG to do so. But the WSC has not even been notified that the required
resources have been allocated.

In this case, A WSG has the responsibility to notify its WSCs with any
status change, such as Allocation Notification, et al. In this scenario, the
WSG is a A WSC, in another hand, have the responsibility to inform the
WSG when the notifications of resources allocation have been received.

Firstly, the WSG disseminates information as a Notifications Publisher
by sending one-way messages to the WSC as a Notification subscriber that
are registered to receive it. Secondly, the WSC plays a role of Notification
Publisher to send the notification back to the WSG while WSG is a
Notification Subscriber. If a WSG doesn’t hear from a WSC about the
notification for a while, a copy of this notification will be sent again. But if
the WSG crashes in the middle of this resend procedure, the deadlock will
show up again. In section 4.3, we will introduce Session Recovery to prevent
this deadlock caused by WSG failure.

4.2 WSG Failure Report

Previously, The WSG Director has no instrument to be informed if a
WSG is disabled to connect to its Clients. Here we report a proper method
for the WSC client to inform the WSGs Director about WSG failures. When
a WSC has a problem when connecting to a WSG, it reports an error code to
WSGs Director with this failure. With this report in hand, the WSGs Director
evaluates the failure and restart the WSG if needed.

An API to this method is implemented on the Client side of WSG. The
Failure Report method consists of 3 parameters: 1) Client Session ID; 2)

12

WSG handle; 3) Error Code.
Using this method, the WSCs group can partially be a WSGs status

monitor, and significantly increase the reliability of the WSG system.

4.3 Sessions Recovery

In Figure 4, WSG crashes and restarts at some time between step 5 and
step 6. After restart, WSG cannot build the service sessions for WSC by
itself as it doesn’t know either the session’s credential or WSC’s
user-name/password. However, the WSC will not send any further request
unless it receives the resource allocation notification. Unfortunately, due to
the notification failure caused by service sessions lost, a deadlock comes up.
Moreover, the resources allocated for the WSC will not be used or released.
In this scenario, we recover the client session and service session when
restart the WSGs.

Table 1. Recovery Table

Client

Session ID
Flag Notification End point

Service

Name

List

Notification

Not Received

EGO service1
ClientSession1VALID http://wsc1.jlu.edu.cn/8800

EGO service2 Note1 Note2

EGO service1 Note1
ClientSession2VALID http://wsc2.jlu.edu.cn/8801

EGO service2 Note2 Note3 Note4

As WSG decides when and what should be saved, only necessary

information is saved for the recovery, which is one of the advantages of
application level checkpointing. The below table, Recovery Table, will be
maintained by WSG Data Manager in the disk. The table records all the
active client sessions identified by session ID, WSCs’ endpoint to receive
notifications, the EGO services that a WSC is accessing, and Allocation
Notifications which are not received and reported back from WSCs. After
restart, the recovery algorithm will recover all the existing client and service
sessions. When the sessions between WSCs and WSGs rebuilded, the WSGs
will send again the Allocation Notifications exist in the table, to the WSCs.
The Allocation Notifications will be removed from the recovery table when

13

the WSG get the reply from the WSC. If all the Notifications have been
received by WSCs, the Column “Notification Not Received” in the recovery
table will be blank.

4.4 Recovery Algorithm

As the WSCs are designed by the different users, they could have
different working models. Hence, the WSG’s recovery algorithm must
consider all the possible behaviors of WSCs. And we should isolate the
recovery procedures for different WSCs so that they will not affect each
other. The checkpointing/restart algorithms are embedded in WSG’s source
code.

The recovery algorithm consists of six parts.

Algorithm Part 1: After restart, WSG will rebuild the Recovery Table and
start a dedicated recovery thread to do the recovery as below.
{

Build the Recovery Table from disk;
Mark all the client sessions in the Table as INVALID;
Create the recovery thread dedicated for recovery, then:

The Main thread will execute algorithm part 2;
The dedicated recovery thread will execute algorithm part 3;

}

Algorithm Part 2: At normal runtime, all the active client sessions in the
Recover Table are marked as VALID, and WSG will execute this part of
Algorithm.
While (true){
 Get a Request from WSC;

If (the Request is from an INVALID client session) Then {
// this “ branch” will only be executed after WSG restart.
Get session credential from the request’s SOAP message header;
Rebuild all the service sessions with the services in the Service

Name List;
 Mark the client session as VALID;

14

};
Handle the Requests;
If (the Request is created a new client session) Then {
 Append a new item in the recovery table;
 Fill the WSC’s Notification Endpoint and the client session ID;
 Mark the new client session as VALID;
};
If (the Request is closed a client session) Then {
 Remove the item from the recovery table for the client session;
};
If (the Request is created a new service session) Then {
 Execute algorithm part 4;

Append the service name into the Service Name List for the proper
client session;
}
If (the Request is closed a service session) Then {

Remove the service name from the Service Name List for the proper
client session;
};
Get a message from WSC;
If (the message is Notification Received) Then {
 Remove the Notification from the Recovery Table;
}
If (the contents of the Recovery Table changes) Then {
 Save the Recovery Table into the disk;
}

}

Algorithm Part 3: The recovery thread will execute the following
algorithm.
Do {

Send WSG Restart notification to all the WSCs with an client session
marked as INVLAID in Recovery Table;
//WSCs will execute algorithm part 5 while get the notification

 While (there are replies from WSCs) {

15

 // handle WSCs’ replies for WSG Restart notification
 Get the reply from next WSC;
 If(the WSC’s client session is marked INVALID) Then {

Get the session credential from the reply’s SOAP message
header;

Rebuild all the service sessions with the services in the Service
Name List;

 Mark the client session from this WSC as VALID;
 } Else { // ignore the redundant replies.
 Discard the reply;

}
}

} Until (all the client sessions are VALID)
Exit the thread;

Algorithm Part 4: This part of algorithm is executed by Request Director to
return a lightest workload WSG to the WSC, or restart a failed WSG.
{
 If(create a new service session request) Then{

 If(No WSG avaiable) Then {
Start a new WSG and return the WSG URL to WSC;

}else{
 Return a lightest workload WSG to WSC;
}

}
If(WSG Recovery Request) Then{
 Go to Algorithm part 3; //Restart the failed WSG;
}

}

Algorithm Part 5: This part of the algorithm is executed by the WSCs
notification handlers, to report back any information.
{

If (it is a WSG Restart notification) Then {
 Put client session’s credential in the reply’s SOAP message header;

16

 Send the reply to WSG;
}
If(it is a Resource Allocation Notification) Then{
 Send a message to WSG that the Notification has been received;
}
If(…) {……}

}

Algorithm Part 6: This part of algorithm is invoked by the WSC when
unable to connect to a WSG.
{
 If(Unable to Connect to WSG) Then{

 Send to Request Director a WSG Recovery Request;
 //WSG will execute algorithm part 4;
}
If(Conneting to WSG Timeout) Then{
 If(Timeout over 3 times) Then{
 Set the status to Unable to Connect to WSG;

}else{
 Reconnecting to WSG;
 }
}

}
The algorithm works in a-synchronized model so that after restart WSG

can accept the WSCs’ requests immediately without waiting for the recovery
process to finish. Hence, the WSG’s recovery is almost invisible to WSCs.
As the recovery process for each WSC is handled separately, different WSCs
will not affect each other during the recovery stage. Moreover, the algorithm
works well with the WSG cluster model which will be discussed in next
section. In Platform EGO, all WSGs have a share file system to save the
configuration and the Recovery Tables so that if a WSG cannot restart
somehow, its Recovery Table can be taken over by another WSG. Hence,
WSGs can be backups for each other in cluster model.

17

5. CONCLUSION

The paper discussed the design and implementation of the web service
gateway for Platform EGO. The pattern of Web Service Gateway to trap and
map service requestors to its target services can be found in other
commercial products, like WebSphere Application Server. Compared with
these products, Platform EGO WSG is an enhanced implementation, as it
provides more advanced functionalities, such as notification, fault-tolerance,
and can work in cluster model with dynamic load balancing.

In the paper, the application level rollback recovery approach is used in
WSG. Since the most critical information in a WSG is the active sessions
between WSG and its WSCs, and the sessions between WSG and EGO
internal services, we designed a session based a-synchronized recovery
algorithm which has short freezing time and is able to isolate the recoveries
of different WSCs. This fault tolerant approach can rebuild the service
sessions and the notification mechanism after restart, to handle the WSG
failures. Moreover, a lightweight notification mechanism is implemented to
enable the EGO services to send messages to web service clients (WSCs) in
a-synchronized model without any change to the underneath SOAP stack.

6. ACKNOWLEDGEMENT

The authors would like to acknowledge support from the China NSF

under Grant No.60703024, Platform Computing Inc. under Grant
3B6056721421, and Jilin Department of Science and Technology under
Grant No.20070122 and 20060532.

7. REFERENCE

[1] I. Foster (2006) Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP

International Conference on Network and Parallel Computing, Springer-Verlag LNCS

3779, pp 2-13

[2] Aghdaie, N., Tamir, Y. (2002) Implementation and Evaluation of Transparent
Fault-Tolerant Web Service with Kernel-Level Support. Proceedings of the IEEE

International Conference on Computer Communications and Networks, pp 63-68

18

[3] Dialani, V., Miles, S., Moreau, et al (2002) Transparent Fault Tolerance for Web
Services Based Architectures. Proceedings of 8th International Euro-Par Conference on

Parallel Processing, Paderborn, Germany Proceedings. Volume 2400

[4] Giuliana Teixeira Santos, Lau Cheuk Lung, Carlos Montez (2005) FTWeb: A Fault
Tolerant Infrastructure for Web Services. Proceedings of the 2005 Ninth IEEE

International EDOC Enterprise Computing Conference (EDOC’05)

[5] Alvisi, L. Bressoud, T.C. El-Khashab, and et al (2001) Wrapping server-side TCP to
mask connection failures. Proceedings of INFOCOM 2001.Twentieth Annual Joint

Conference of the IEEE Computer and Communications Societies

[6] P. Townend and J. Xu (2004) "Replication-based Fault Tolerance in a Grid
Environment", in Proceedings of U.K. e-Science 3rd All-Hands Meeting, Simon J. Cox

Eds., Nottingham Conference Center, U.K., 31st Aug. - 3rd Sept., 2004, ISBN

1-904425-21-6.

[7] Condor Team, University of Wisconsin-Madison. (2002) Condor Version 6.8.2 Manual,
http://www.cs.wisc.edu/condor/manual/v6.8/ref.html. Accessed Jan. 2006

[8] Anthony Nadalin IBM, Chris Kaler Microsoft, Ronald Monzillo Sun, et al (2006)
wss-v1.1-os-UsernameTokenProfile. http://docs.oasis-open.org/wss/v1.1/. Accessed May

2006

[9] Steve Graham, Peter Niblett, Dave Chappell et al (2004) Publish-Subscribe Notification
for Web services, 1.0. http://www-128.ibm.com/developerworks/library/ws-pubsub/WS

-PubSub.pdf Accessed May 2006

